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The hard-disk system is studied by observing the nonequilibrium relaxation behavior of a bond-orientational
order parameter. The density dependence of characteristic relaxation timet is estimated from the finite-time
scaling analysis. The critical point between the fluid and the hexatic phase is refined to be 0.899s1d by
assuming the divergence behavior of the Kosterlitz-Thouless transition. The value of the critical exponenth is
also studied by analyzing the fluctuation of the order parameter at the criticality and estimated ash=0.25s2d.
These results are consistent with the prediction by the Kosterlitz-Thouless-Halperin-Nelson-Young theory.
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Although the hard-disk system is the simplest model
which involves the melting transition[1,2], there are still
unanswered questions[3]. Recently, the nonequilibrium re-
laxation behavior of a bond-orientational order parameter has
been studied, and two Kosterlitz-Thouless(KT) transitions
have been observed[4]. This behavior is consistent with the
prediction proposed by Halperin and Nelson[5] and Young
[6]. They discussed unbinding processes of disclinations and
dislocations based on the KT transition[7], and introduced a
new phase named the hexatic phase. This melting scenario is
now referred to as the Kosterlitz-Thouless-Halperin-Nelson-
Young (KTHNY ) theory.

Besides the KTHNY theory, there are other scenarios for
predicting the first-order transition. Chui[8] studied the
spontaneous generation of grain boundaries, and concluded
that two-dimensional melting occurs through a single first-
order transition. Ryzhov and Tareyeva[9] estimated the sta-
bility limits of the solid and hexatic phases based on the
density-functional approach and concluded that the two-
electron electron system can have two separate transitions,
but the hard-disk system does not have the hexatic phase.

Many numerical studies have been carried out to clarify
the two-dimensional melting phenomena. Two densities
characterizing two-dimensional melting are denoted byri
andrm; which correspond to the starting and ending points of
an intermediate phase, respectively. The intermediate phase
is understood to be the coexisting phase in terms of the first-
order transition, and the hexatic phase is that of the KTHNY
theory. This range of density becomes smaller when the sys-
tem becomes larger. Alder and Wainwright[2] studied the
system with number of particlesN=870, using a molecular
dynamics simulation. They concluded that the transition is of
the first order on the basis of a van der Waals looplike be-
havior of pressure. They obtainedri =0.880 andrm=0.912.
(Hereafter, we use the definition of density which is reduced
by the hard-disk diameter asr=4Ns2/A with the areaA of
the system, the total number of particlesN, and the radiuss
of particles.) Fernandezet al. [10] studied the system ofN
=15 876 by a constant-pressure Monte Carlo(MC) simula-
tion and obtainedri =rm=0.916s5d. They concluded that the
intermediate phase does not exist or its range is small. Zoll-
weg et al. [11] examined the size dependence in the hard-

disk system ofN=16 384–65 535 by the MC method and
found a strong finite-size effect(physical quantities drift over
long MC runs) near the criticality. They pointed out that the
density range of the intermediate phase becomes smaller
with increasing system size. Hence it is unclear whether the
intermediate phase survives or vanishes in the thermody-
namic limit. Jaster[12] studied the divergence of the bond-
orientational correlation length and the susceptibility by the
MC method. He treated systems withN=1024–65 535 and
showed that the behavior of the bond-orientational correla-
tion and the susceptibility as well as the value of the critical
exponenth are consistent with the KTHNY theory. He ob-
tainedri =0.899s1d andrm.0.91. Weberet al. [13] studied
the bond-orientational susceptibility as a function of density
with the N=16 384 system, and obtainedri .0.880 and
rm,0.905. They fitted a plot based on the KTHNY theory,
and obtained an unphysical value of the critical pointri8
,0.913s1d which is larger than the value ofrm. They con-
cluded that the result was not compatible with the prediction
of the KTHNY theory.

Most of the numerical works introduced above used the
equilibrium Monte Carlo (EMC) simulations. The EMC
method is popular and has been widely used in statistical
physics. However, the EMC method encounters some trouble
for systems with slow relaxation. In particular, it makes the
analysis of large systems involving the KT transition diffi-
cult, since the correlation length diverges exponentially near
the criticality.

Instead of the EMC method, a method is proposed by
which the nonequilibrium behavior of order parameters is
studied to obtain properties in the thermodynamic limit[14].
This analysis is called the nonequilibrium relaxation(NER)
method. This method has been used to study phase diagrams
and to determine accurate values of critical points and criti-
cal exponents for transitions of various systems: spin-glass
transition[15], chiral-glass transition[16], and the KT tran-
sition [17,18].

The NER method has some advantages over the EMC
method. It is less influenced by finite-size effects. For a fixed
time t, the time-dependent correlation lengthjstd remains
finite whent is smaller than the correlation timet. Thus, up
to the correlation time, the finite-size effect of the system is
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negligible. Furthermore, the NER method makes use of only
the relaxation processes, so the attainment of equilibration,
which is the most time-consuming process in the EMC simu-
lations, is unnecessary.

In our previous work[4], we studied hard-disk melting of
the system withN=23 288 by observing the nonequilibrium
behavior of the bond-orientational order. From scaling analy-
ses based on the dynamic scaling hypothesis, we obtained
ri =0.901s1d andrm=0.910s1d. Ozeki et al. [18] proposed a
more efficient method of determining the critical point of the
KT transition. In their method, relative values of the relax-
ation timest are estimated by scaling. Then the critical point
can be determined from the divergence behavior of the ob-
tained values oft. In this paper, we study the transition be-
tween the fluid and the hexatic phase by analyzing the NER
behavior of the bond-orientational order. We obtain an accu-
rate value ofri using dynamic KT scaling. With the obtained
critical point, we determine the value of the critical exponent
h by observing a nonequilibrium fluctuation of the order
parameter.

We introduce the bond-orientational order parameter to
characterize the two-dimensional melting. The parameter is
denoted byf6 and is defined as

f6 = U 1

N
o
k

N

o
l

nk exps6iukld
nk

U2

, s1d

wherenk denotes the number of neighbors of particlek, and
ukl denotes the angle between a fixed axis and the bond con-
necting particlesk and l.

The neighbors in an off-lattice model are strictly defined
with the Voronoi construction[12], but this is a very time-
consuming method. In this paper, two particles separated by
a distance less than 2.6 times their radius are defined as
neighbors. We confirmed that the value off6 is approxi-
mately the same value as the obtained value with the Voronoi
construction.

The scaling behavior of the NER process is constructed,
assuming a time-dependent form of free energy, as

Fse,h,L,td = L−dF̄seLyT,hLyH,tL−zd, s2d

whereL, h, ande denote the linear system size, the external
field, and the reduced densitysr−rcd /rc, respectively. The
exponentsyT andyH are 1/n andd−b /n, respectively, with
the exponent of correlation lengthn, magnetizationb, and
system dimensionalityd. The dynamical exponent is denoted
by z. On the basis of the dynamical scaling hypothesiss2d,
the correlation lengthj and characteristic relaxation timet
have the relationship

t , jz. s3d

This means that finite-scaling analyses are easily applicable
to finite-time scaling by replacingL with t1/z.

In the KT transition, the correlation length diverges expo-
nentially asj,expsa8 /Î«d [7]. From Eq.(3), the divergence
behavior of the relaxation timet is expected to be

tsed = b expsa/Î«d. s4d

Using this scaling function, one can obtain the critical point.
It is difficult to determine absolute values of relaxation time
for each density. Instead, one can estimate relative values of
tsed from finite-time scalingf18g. A natural scaling form of
the bond-orientational order parameter can be expressed as

f6st,ed = tsed−lf̄6ft/tsedg, s5d

where l is the dynamic exponent which is independent of
density. Based on Eq.s5d, we plottlf6 as a function oft /t.
With appropriately chosenl andtsed, the relaxation curves
tlf6 would collapse to a single curve. After that, we can
estimate the critical point by fitting divergence behaviors4d
to tsed obtained above.

At the critical point, one can estimate the values of the
critical exponents from the nonequilibrium behavior of fluc-
tuations. From Eq.(2), the asymptotic behavior off6std at
the critical point is expected as

f6std , t−h/2z, s6d

with the exponentsh andz f14g. Similarly, the fluctuation of
f6 is expected asymptoticallyst→`d to be

fmmstd = NF kf6std2l
kf6stdl2 − 1G , td/z. s7d

With Eqs. s6d and s7d, we can estimate the values of the
critical exponentsh and z from the asymptotic behavior of
the relaxation off6 and its fluctuation.

We monitor the relaxation behavior of the bond-
orientational order parameter of the hard-disk system. The
starting configuration is set to be the perfect hexagonal-
packed configuration, that is,f6s0d=1. The particle number
N is fixed at 23 288 throughout our simulations. We per-
formed simulations of several system sizes and confirmed
that this system size is large enough to regard the behavior of
the longest simulation as the behavior of the infinite system
with adequate accuracy. Periodic boundary conditions are
taken for both directions of the simulation box. Up to 512
independent samples are averaged and about 109 collisions

FIG. 1. Relaxation of the bond-orientational orderf6std for vari-
ous densities fromr=0.800 to 0.890 in log-log plot. Natural loga-
rithms are used for all figures.
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are performed for each density. We study the range of den-
sities fromr=0.800 to 0.880 with the resolution of 0.01 and
from r=0.880 to 0.890 with a fine resolution of 0.002.

Time evolution of the system is performed by event-
driven molecular dynamics(EDMD) simulation. The EDMD
method was first seen in 1959[19]. The computational pro-
cess advances by proceeding collision events of hard par-
ticles. In this method, the amount of the computation time
required to proceed a single collision isOsN2d. Using a
neighbor-search algorithm with an exclusive grid mesh[20],
it reduces toOsNd. With additional optimization techniques,
such as the complete binary tree search and the dynamical
upper time cutoff[21], it is finally reduced toOsln Nd. The
efficiency of the EDMD and the time-step molecular dynam-
ics (TSMD) simulation depends on the detailed properties of
systems. For the case of the hard-disk system, Rapaport[22]
reported that EDMD exhibits better performance than TSMD
up to N,105.

The relaxation curves off6std for each density are shown
in Fig. 1. We made a scaling plot using Eq.(5) and the result
with l=0.15s1d is shown in Fig. 2. Natural logarithms are
used for all figures. The estimatedtsrd is plotted in Fig. 3,
and we obtain the critical densityri =0.899s1d, which is the

transition point between the liquid and the hexatic phase.
With the critical pointri =0.899 obtained above, we esti-

mate the critical exponentsh andz from the NER fluctuation
analysis. The time evolution off6std and its fluctuation at the
criticality are shown in Figs. 4 and 5, respectively. From the
asymptotic behavior off6std, we determine the value of
h /2z to be

h/2z= 0.05s1d. s8d

Similarly, from Eq.s7d, we obtain the value ofd/z to be

d/z= 0.8s1d, s9d

with the dimensionalityd=2. From Eqs.s8d ands9d, we ob-
tain the values of the critical exponentsh=0.25s2d and z
=2.5s2d.

In this paper, we observe the NER behavior of the bond-
orientational order parameterf6 of the hard-disk system. We
obtain (i) a critical pointri of 0.899s1d with the dynamical
KT scaling, and(ii ) the critical exponenth of 0.25s2d by
observing the fluctuation off6.

FIG. 2. Scaling plot of bond-orientational order for all densities
with appropriately chosentsed andl in log-log plot.

FIG. 3. Relaxation timestsed in units of t at r=0.888 in semi-
log plot. The solid curve is the line fitted using scaling form(4)
with ri =0.899s1d, a=0.876s2d, andb=1.63s1d310−3.

FIG. 4. Time evolution of the bond-orientational order param-
eter f6std. After initial relaxation,f6std shows power-law decay.
From the asymptotic behaviorf6, t−h/2z, the value ofh /2z is de-
termined to be 0.05s1d.

FIG. 5. The behavior of the fluctuation of the bond-orientational
order parameter. After an initial relaxation, it shows good power-
law behavior. From the asymptotic behavior(7), the value ofd/z is
determined to be 0.8s1d. With d=2, one can obtainz=2.5s2d.
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The critical densityri obtained here is different fromri8
,0.913s1d which was obtained by a similar fitting per-
formed by Weberet al. [13]. However in their study, the
resolution of density near the criticality was insufficient.
Therefore it is difficult to obtain an accurate value of the
critical point by fitting.

We do not observe the saturation of the correlation time
(i.e., that of the correlation length) near the critical point up
to a system size ofN=23 288. This indicates that the transi-
tion would not be first order since the correlations would be
finite in the first-order transition. However in a larger system,
the correlation length may be finite; we thus cannot avoid the
possibility of the first-order transition. To clarify this prob-
lem, we need more computational power or alternative ana-
lytical approaches.

The value ofri obtained here is close to the crossing point
of the fourth-order cumulant(the Binder parameter) rcross
,0.8985s5d estimated by Weberet al. While the Binder pa-
rameter should collapse over a finite range of density with
KT transitions, they did not observe this and they concluded
that this is one of the discrepancies with the KTHNY theory.
It is difficult to thermalize the system in the KT phase be-
cause of the divergence of the correlation time. Thus the

collapse behavior of the Binder parameter can be improved
with a longer simulation time.

To summarize, the NER behavior of the bond-
orientational parameter indicates that the transition between
the isotropic and the hexatic phase is a KT transition. The
results are consistent with the prediction of the KTHNY
theory for the transition point and the critical exponents. The
value of h,1/4 is strong evidence that the transition is of
the KT type. We do not study the transition between the
hexatic and the solid phase in this paper. In our previous
study [4], the transition point was estimated to berm
=0.910s2d, but we did not obtain the critical exponent at the
transition. This issue is a problem for future consideration.
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