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The hard-disk system is studied by observing the nonequilibrium relaxation behavior of a bond-orientational
order parameter. The density dependence of characteristic relaxation tgrestimated from the finite-time
scaling analysis. The critical point between the fluid and the hexatic phase is refined to beL)B99
assuming the divergence behavior of the Kosterlitz-Thouless transition. The value of the critical expnent
also studied by analyzing the fluctuation of the order parameter at the criticality and estimate.252).

These results are consistent with the prediction by the Kosterlitz-Thouless-Halperin-Nelson-Young theory.
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Although the hard-disk system is the simplest modeldisk system ofN=16 384—65 535 by the MC method and
which involves the melting transitiofil,2], there are still found a strong finite-size effegbhysical quantities drift over
unanswered questiorj8]. Recently, the nonequilibrium re- long MC rung near the criticality. They pointed out that the
laxation behavior of a bond-orientational order parameter hadensity range of the intermediate phase becomes smaller
been studied, and two Kosterlitz-Thoule@€T) transitions  with increasing system size. Hence it is unclear whether the
have been observdd]. This behavior is consistent with the intermediate phase survives or vanishes in the thermody-
prediction proposed by Halperin and Nelsg# and Young  namic limit. Jasteff12] studied the divergence of the bond-
[6]. They discussed unbinding processes of disclinations andrientational correlation length and the susceptibility by the
dislocations based on the KT transitipfi, and introduced a MC method. He treated systems with=1024—-65 535 and
new phase named the hexatic phase. This melting scenario$fowed that the behavior of the bond-orientational correla-
now referred to as the Kosterlitz-Thouless-Halperin-Nelsontion and the susceptibility as well as the value of the critical
Young (KTHNY) theory. exponentzn are consistent with the KTHNY theory. He ob-

Besides the KTHNY theory, there are other scenarios fotainedp;=0.8991) and p,,>0.91. Weberet al. [13] studied
predicting the first-order transition. ChyB] studied the the bond-orientational susceptibility as a function of density
spontaneous generation of grain boundaries, and concludedth the N=16 384 system, and obtaingg>0.880 and
that two-dimensional melting occurs through a single first-p,,<<0.905. They fitted a plot based on the KTHNY theory,
order transition. Ryzhov and Tareyef@] estimated the sta- and obtained an unphysical value of the critical pait
bility limits of the solid and hexatic phases based on the~0.9131) which is larger than the value @i, They con-
density-functional approach and concluded that the twoeluded that the result was not compatible with the prediction
electron electron system can have two separate transitionsf the KTHNY theory.
but the hard-disk system does not have the hexatic phase. Most of the numerical works introduced above used the

Many numerical studies have been carried out to clarifyequilibrium Monte Carlo(EMC) simulations. The EMC
the two-dimensional melting phenomena. Two densitiesnethod is popular and has been widely used in statistical
characterizing two-dimensional melting are denotedgiy physics. However, the EMC method encounters some trouble
andpp,, which correspond to the starting and ending points offor systems with slow relaxation. In particular, it makes the
an intermediate phase, respectively. The intermediate phasalysis of large systems involving the KT transition diffi-
is understood to be the coexisting phase in terms of the firsteult, since the correlation length diverges exponentially near
order transition, and the hexatic phase is that of the KTHNYthe criticality.
theory. This range of density becomes smaller when the sys- Instead of the EMC method, a method is proposed by
tem becomes larger. Alder and Wainwrigt®] studied the  which the nonequilibrium behavior of order parameters is
system with number of particled=870, using a molecular studied to obtain properties in the thermodynamic lifhi].
dynamics simulation. They concluded that the transition is ofThis analysis is called the nonequilibrium relaxatidvER)
the first order on the basis of a van der Waals looplike bemethod. This method has been used to study phase diagrams
havior of pressure. They obtaingg=0.880 andp,,=0.912.  and to determine accurate values of critical points and criti-
(Hereafter, we use the definition of density which is reducectal exponents for transitions of various systems: spin-glass
by the hard-disk diameter gs=4No?/A with the areaA of  transition[15], chiral-glass transitiofil6], and the KT tran-
the system, the total number of particsand the radiusr  sition [17,1§.
of particles) Fernandezt al. [10] studied the system dfl The NER method has some advantages over the EMC
=15 876 by a constant-pressure Monte CAMC) simula-  method. It is less influenced by finite-size effects. For a fixed
tion and obtaineg; =p,,=0.91@5). They concluded that the time t, the time-dependent correlation lenggtt) remains
intermediate phase does not exist or its range is small. Zolffinite whent is smaller than the correlation time Thus, up
weg et al. [11] examined the size dependence in the hard{o the correlation time, the finite-size effect of the system is
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negligible. Furthermore, the NER method makes use of only 1
the relaxation processes, so the attainment of equilibration,
which is the most time-consuming process in the EMC simu-
lations, is unnecessary.

In our previous work4], we studied hard-disk melting of
the system witiN=23 288 by observing the nonequilibrium
behavior of the bond-orientational order. From scaling analy-
ses based on the dynamic scaling hypothesis, we obtained
pi=0.9041) andp,,=0.91Q1). Ozekiet al. [18] proposed a
more efficient method of determining the critical point of the
KT transition. In their method, relative values of the relax- -
ation timesr are estimated by scaling. Then the critical point oo 1000 10000 100000
can be determined from the divergence behavior of the ob- t
tained values of.. In this paper, we study the transition be- _ ) _ _
tween the fluid and the hexatic phase by analyzing the NER FIG. 1: _Relaxatlon of the bond-orl_entatlonal ordgt) for vari-
behavior of the bond-orientational order. We obtain an accu®Us densities fronp=0.800 to 0.890 in log-log plot. Natural loga-
rate value of, using dynamic KT scaling. With the obtained "thms are used for all figures.
critical point, we determine the value of the critical exponent
n by observing a nonequilibrium fluctuation of the order e)=b exp(a/\g)_ (4)
parameter. ) _ ) ) ) . )

We introduce the bond-orientational order parameter td’Sing this scaling function, one can obtain the critical point.
characterize the two-dimensional melting. The parameter iit is difficult to determine absolute values of relaxation time

01

o)

denoted bys, and is defined as for each density. Instead, one can estimate relative values of
7(e) from finite-time scaling 18]. A natural scaling form of
e 1 % % exp(6i ) 2 o the bond-orientational order parameter can be expressed as
oINS ne | ot €) = (&) e[t/ {e)], (5)

where \ is the dynamic exponent which is independent of

wheren, denotes the number of neighbors of partiklend densi .

. . ensity. Based on E@5), we plot 7 ¢ as a function ot/ .
fla denotes the angle between a fixed axis and the bond Cong, appropriately chosen and (), the relaxation curves
necting particlek andl.

The neighbors in an off-lattice model are strictly definedT}\9256 would collapse to a single curve. After that, we can

with the Voronoi constructiori12], but this is a very time- estimate the critical point by fitting divergence behaviéy

. ; ; to 7(e) obtained above.
consuming method. In this paper, two particl arated b .. . .
uming method S Paper, particies separate )9 At the critical point, one can estimate the values of the

a distance less than 2.6 times their radius are defined as.t. | s f th ilibrium behavior of fl
neighbors. We confirmed that the value ¢f is approxi- criical exponents from e nonequiiibrium benhavior o Tiuc-

mately the same value as the obtained value with the Voron&tlat'or].s' FrO‘T‘ Eg(Z), the asymptotic behavior abs(t) at
construction. the critical point is expected as
The scaling behavior of the NER process is constructed, Pe(t) ~ 7722, (6)
assuming a time-dependent form of free energy, as
with the exponents; andz [14]. Similarly, the fluctuation of

Feh,L,t) = L_dE(GLyT,hLyH,tL_Z), ) ¢e is expected asymptoticallft— o) to be
<¢6(t)2> d/z
wherelL, h, ande denote the linear system size, the external fm(t) =N W -1 ~t9 @)
6

field, and the reduced density—p.)/p., respectively. The
exponents/r andyy are 1/v andd- B/ v, respectively, with  With Egs. (6) and (7), we can estimate the values of the
the exponent of correlation lengtty magnetizations, and  critical exponentsy and z from the asymptotic behavior of
system dimensionality. The dynamical exponent is denoted the relaxation ofis and its fluctuation.

by z. On the basis of the dynamical scaling hypothé&gijs We monitor the relaxation behavior of the bond-
the correlation lengtl¥ and characteristic relaxation time  orientational order parameter of the hard-disk system. The
have the relationship starting configuration is set to be the perfect hexagonal-
packed configuration, that igjs(0)=1. The particle number
T~ &. 3 N is fixed at 23 288 throughout our simulations. We per-

formed simulations of several system sizes and confirmed
This means that finite-scaling analyses are easily applicablghat this system size is large enough to regard the behavior of
to finite-time scaling by replacing with t'/2. the longest simulation as the behavior of the infinite system
In the KT transition, the correlation length diverges expo-with adequate accuracy. Periodic boundary conditions are
nentially asé~expa’/ve) [7]. From Eq.(3), the divergence taken for both directions of the simulation box. Up to 512
behavior of the relaxation timeis expected to be independent samples are averaged and aboutdllsions
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FIG. 4. Time evolution of the bond-orientational order param-
eter ¢g(t). After initial relaxation, ¢g(t) shows power-law decay.
From the asymptotic behaviabs~ t~7% the value ofp/2z is de-

) termined to be 0.04).
are performed for each density. We study the range of den-

sities fromp=0.800 to 0.880 with the resolution of 0.01 and

from p=0.880 to 0.890 with a fine resolution of 0.002.
Time evolution of the system is performed by event-

driven molecular dynamic€EDMD) simulation. The EDMD

FIG. 2. Scaling plot of bond-orientational order for all densities
with appropriately chosem(e) andX\ in log-log plot.

transition point between the liquid and the hexatic phase.
With the critical pointp;=0.899 obtained above, we esti-
mate the critical exponentg andz from the NER fluctuation

method was first seen in 19589]. The computational pro- analysis. The time evolution @fg(t) and its fluctuation at the
: ?_riticality are shown in Figs. 4 and 5, respectively. From the

cess advances by proceeding collision events of hard pal . . '
ticles. In this method, the amount of the computation timea%?ﬁ;{o;g behavior of(1), we determine the value of
n

required to proceed a single collision @(N?). Using a
rleighbor—search algqrithm yvjth an ex'clqsiv.e grid mm, 7/22=0.051). (8)
it reduces toO(N). With additional optimization techniques,

such as the complete binary tree search and the dynamic@imilarly, from Eq.(7), we obtain the value odi/z to be
upper time cutofff21], it is finally reduced taO(In N). The

efficiency of the EDMD and the time-step molecular dynam- d/z=0.81), ©)

ics (TSMD) simulation depends on the detailed properties ofy;ith the dimensionalityd=2. From Egs(8) and(9), we ob-

systems. For the case of the hard-disk system, Rapf#irt tain the values of the critical exponenis=0.252) and z
reported that EDMD exhibits better performance than TSMD:2_32)_

up toN~ 10" In this paper, we observe the NER behavior of the bond-

~ The relaxation curves ahg(t) for each density are shown ,jentational order parametel; of the hard-disk system. We
in Fig. 1. We made a scaling plot using K§) and the result  opain (i) a critical pointp; of 0.8991) with the dynamical
with A=0.151) is shown in Fig. 2. Natural logarithms are 1 gcajing, and(ii) the critical exponent; of 0.252) by
used for all figures. The estimatetp) is plotted in Fig. 3, observing the fluctuation o,

and we obtain the critical densify=0.8991), which is the
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FIG. 5. The behavior of the fluctuation of the bond-orientational

FIG. 3. Relaxation times{(e) in units of 7 at p=0.888 in semi-  order parameter. After an initial relaxation, it shows good power-
log plot. The solid curve is the line fitted using scaling fo#) law behavior. From the asymptotic behavi@y, the value ofd/z is
with p;=0.8991), a=0.8762), andb=1.631) X 1073, determined to be 0(8). With d=2, one can obtaiz=2.52).
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The critical densityp; obtained here is different from/ collapse behavior of the Binder parameter can be improved
~0.9131) which was obtained by a similar fitting per- with a longer simulation time. .
formed by Weberet al. [13]. However in their study, the 10 summarize, the NER behavior of the bond-
resolution of density near the criticality was insufficient. orientational parameter indicates that the transition between
Therefore it is difficult to obtain an accurate value of the € isotropic and the hexatic phase is a KT transition. The
critical point by fitting results are consistent with the prediction of the KTHNY

We do not observe the saturation of the correlation tirnetheory for the transition point and the critical exponents. The

(i.e., that of the correlation lengtimear the critical point up value of »~1/4 is strong evidence that the transition is of
to a system size dil=23 288. This indicates that the transi- the KT type. We do not study the transition between the

. ) . . hexatic and the solid phase in this paper. In our previous
tion would not be first order since the correlations would be P pap P

L . . . study [4], the transition point was estimated to bg,
finite in the first-order transition. However in a larger system,_, 9102), but we did not obtain the critical exponent at the
the correlation length may be finite; we thus cannot avoid the, . . '

Rransition. This issue is a problem for future consideration.
possibility of the first-order transition. To clarify this prob- P

lem, we need more computational power or alternative ana- This work was carried out on SGI 2800 at the Supercom-
lytical approaches. puter Center, Institute for Solid State Physics, University of

The value ofp; obtained here is close to the crossing pointTokyo and CP-PACS at the Center for Computational Phys-
of the fourth-order cumulantthe Binder parametgrp.oss  ics, University of Tsukuba. We thank S. Miyashita for valu-
~0.898%5) estimated by Webeet al. While the Binder pa-  able discussions. This work was partly supported by the
rameter should collapse over a finite range of density witiNestlé Science Promotion Committee, Grant-in-Aid for Sci-
KT transitions, they did not observe this and they concludedntific ResearcliC) No. 15607003 from the Japan Society
that this is one of the discrepancies with the KTHNY theory.for the Promotion of Science, and Grant-in-Aid for Young
It is difficult to thermalize the system in the KT phase be- Scientists(B) No. 14740229 of the Ministry of Education,
cause of the divergence of the correlation time. Thus theScience, Sports and Culture of Japan.
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